Алгебра. Графики функций

В этом уроке вы познакомитесь с такими понятиями, как линейная функция, квадратичная функция, функция обратной пропорциональности, функция квадратного корня. Кроме того, узнаете, что такое возрастающая функция и убывающая функция, что такое наибольшее значение функции и наименьшее значение функции, а также узнаете, как решать задания, входящие в ОГЭ 2024 по математике на тему “Графики функций”.


Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Графики функций”.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

 

Декартова система координат

Система координат – это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчета для каждой из них.

Координатные оси – прямые, образующие систему координат.

Ось абсцисс (ось x ) – горизонтальная ось.

Ось ординат (ось y ) – вертикальная ось.

Декартова система координат

 

Функция

Функция – это отображение элементов множества X на множество Y. При этом каждому элементу x множества X соответствует одно единственное значение y множества Y.

 

Прямая

Линейная функция – функция вида y = a x + b где a и b – любые числа.

Графиком линейной функции является прямая линия.

Рассмотрим, как будет выглядеть график в зависимости от коэффициентов a и b :

Если a > 0 , прямая будет проходить через I и III координатные четверти.

b – точка пересечения прямой с осью y .

График линейной функции

 

Если a < 0 ,

прямая будет проходить через II и IV координатные четверти.

b – точка пересечения прямой с осью y .

График линейной функции

 

Если a = 0 , функция принимает вид y = b .

График линейной функции y = b

 

Отдельно выделим график уравнения x = a .

Важно: это уравнение не является функцией так как нарушается определение функции (функция ставит в соответствие каждому элементу x множества X одно единственно значение y множества Y). Данное уравнение ставит в соответствие одному элементу x бесконечное множества элементов y. Тем не менее, график данного уравнения построить можно. Просто не будем называть его гордым словом «Функция».

График уравнения x = a

 

Парабола

Графиком функции y = a x 2 + b x + c является парабола.

Для того, чтобы однозначно определить, как располагается график параболы на плоскости, нужно знать, на что влияют коэффициенты a , b , c :

  1. Коэффициент a указывает на то, куда направлены ветки параболы.
  • Если a > 0 , ветки параболы направлены вверх.
  • Если a < 0 , ветки параболы направлены вниз.
  1. Коэффициент c указывает, в какой точке парабола пересекает ось y.
  2. Коэффициент b помогает найти x в – координату вершины параболы.

x в = b 2 a

  1. Дискриминант позволяет определить, сколько точек пересечения у параболы с осью .
  • Если D > 0 – две точки пересечения.
  • Если D = 0 – одна точка пересечения.
  • Если D < 0 – нет точек пересечения.

Парабола, квадратичная функция Парабола, квадратичная функция Парабола, квадратичная функция Парабола, квадратичная функция

 

Гипербола

Графиком функции y = k x является гипербола.

Характерная особенность гиперболы в том, что у неё есть асимптоты.

Асимптоты гиперболы – прямые, к которым она стремится, уходя в бесконечность.

Ось x – горизонтальная асимптота гиперболы

Ось y – вертикальная асимптота гиперболы.

На графике асимптоты отмечены зелёной пунктирной линией.

Если коэффициент k > 0 , то ветви гиперолы проходят через I и III четверти.

Гипербола, график обратной пропорциональности

Если k < 0, ветви гиперболы проходят через II и IV четверти.

Гипербола, график обратной пропорциональности

Чем меньше абсолютная величина коэффиента k (коэффициент k без учета знака), тем ближе ветви гиперболы к осям x и y .

Гипербола, график обратной пропорциональности

 

Гипербола, график обратной пропорциональности

 

Квадратный корень

Функция y = x имеет следующий график:

График квадратного корня

 

Возрастающие/убывающие функции

Функция y = f ( x ) возрастает на интервале, если большему значению аргумента (большему значению x ) соответствует большее значение функции (большее значение y ) .

То есть чем больше (правее) икс, тем больше (выше) игрек. График поднимается вверх (смотрим слева направо)

Примеры возрастающих функций:

Возрастающая функция

Функция y = f ( x ) убывает на интервале, если большему значению аргумента (большему значению x ) соответствует меньшее значение функции (большее значение y ) .

То есть чем больше (правее) икс, тем меньше (ниже) игрек. График опускается вниз (смотрим слева направо).

Примеры убывающих функций:

Убывающая функция

Для того, чтобы найти наибольшее значение функции, находим самую высокую точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наибольшим значением функции.

Наибольшее значение функции

Для того, чтобы найти наименьшее значение функции, находим самую нижнюю точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наименьшим значением функции.

Наименьшее значение функции

 

Задание №11 из ОГЭ 2024. Типовые задачи и принцип их решения.

 

Скачать домашнее задание к уроку.